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Abstract—In distributed transactional 

database systems deployed over cloud 

servers, entities cooperate to form proofs of 

authorization that are justified by collections 

of certified credentials. These proofs and 

credentials may be evaluated and collected 

over extended time periods under the risk of 

having the underlying authorization policies 

or the user credentials being in inconsistent 

states. It therefore becomes possible for 

policy-based authorization systems to make 

unsafe decisions that might threaten 

sensitive resources. In this paper, we 

highlight the criticality of the problem. We 

then define the notion of trusted transactions 

when dealing with proofs of authorization. 

Accordingly, we propose several 

increasingly stringent levels of policy 

consistency constraints, and present 

different enforcement approaches to 

guarantee the trustworthiness of transactions 

executing on cloud servers. We propose a 

Two-Phase Validation Commit protocol as a 

solution, which is a modified version of the 

basic Two-Phase Commit protocols. We 

finally analyze the different approaches 

presented using both analytical evaluation of 

the overheads and simulations to guide the 

decision makers to which approach to use. 

1 Introduction  

Cloud computing has recently emerged as a 

computing paradigm in which storage and 

computation can be outsourced from 

organizations to next generation data centers 

hosted by companies such as Amazon, 

Google, Yahoo, and Microsoft. Such 

companies help free organizations from 

requiring expensive infrastructure and 

expertise in-house, and instead make use of 

the cloud providers to maintain, support, and 

broker access to high-end resources. From 

an economic perspective, cloud consumers 

can save huge IT capital investments and be 

charged on the basis of a pay-only-for-

whatyou-use pricing model. One of the most 
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appealing aspects of cloud computing is its 

elasticity, which provides an illusion of 

infinite, ondemand resources [1] making it 

an attractive environment for highly-

scalable, multi-tiered applications. However, 

this can create additional challenges for 

back-end, transactional database systems, 

which were designed without elasticity in 

mind. Despite the efforts of key-value stores 

like Amazon’s SimpleDB, Dynamo, and 

Google’s Bigtable to provide scalable access 

to huge amounts of data, transactional 

guarantees remain a bottleneck To provide 

scalability and elasticity, cloud services 

often make heavy use of replication to 

ensure consistent performance and 

availability. As a result, many cloud services 

rely on the notion of eventual consistency 

when propagating data throughout the 

system. This consistency model is a variant 

of weak consistency that allows data to be 

inconsistent among some replicas during the 

update process, but ensures that updates will 

eventually be propagated to all replicas. 

Thismakes it difficult to strictly maintain the 

ACID guarantees, as the ’C’ (consistency) 

part of ACID is sacrificed to provide 

reasonable availability . In systems that host 

sensitive resources, accesses are protected 

via authorization policies that describe the 

conditions under which users should be 

permitted access to resources. These policies 

describe relationships between the system 

principals, as well as the certified credentials 

that users must provide to attest to their 

attributes. In a transactional database system 

that is deployed in a highly distributed and 

elastic system such as the cloud, policies 

would typically be replicated— very much 

like data—among multiple sites, often 

following the same weak or eventual 

consistency model. It therefore becomes 

possible for a policy-based authorization 

system to make unsafe decisions using stale 

policies. Interesting consistency problems 

can arise as transactional database systems 

are deployed in cloud environments and use 

policy-based authorization systems to 

protect sensitive resources. In addition to 

handling consistency issues amongst 

database replicas, we must also handle two 

types of security inconsistency conditions. 

First, the system may suffer from policy 

inconsistencies during policy updates due to 

the relaxed consistency model underlying 

most cloud services. For example, it is 

possible for several versions of the policy to 

be observed at multiple sites within a single 

transaction, leading to inconsistent (and 

likely unsafe) access decisions during the 
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transaction. Second, it is possible for 

external factors to cause user credential 

inconsistencies over the lifetime of a 

transaction [4]. For instance, a user’s login 

credentials could be invalidated or revoked 

after collection by the authorization server, 

but before the completion of the transaction. 

In this paper, we address this confluence of 

data, policy, and credential inconsistency 

problems that can emerge as transactional 

database systems are deployed to the cloud. 

In doing so we make the following 

contributions: • We formalize the concept of 

trusted transactions. Trusted transactions are 

those transactions that do not violate 

credential or policy inconsistencies over the 

lifetime of the transaction. We then present a 

more general term, safe transactions, that 

identifies transactions that are both trusted 

and conform to the ACID properties of 

distributed database systems (Sec. 2). • We 

define several different levels of policy 

consistency constraints and corresponding 

enforcement approaches that guarantee the 

trustworthiness of transactions being 

executed on cloud servers (Sec. 3). • We 

propose a Two-Phase Validation Commit 

(2PVC) protocol that ensures that a 

transaction is safe by checking policy, 

credential, and data consistency during 

transaction execution (Sec. 4). • We carry 

out an experimental evaluation of our 

proposed approaches (Sec. 5), and present a 

trade-off discussion to guide decision 

makers as to which approach is most 

suitable in various situations (Sec 6). 

Finally, Sec. 7 describes previous related 

work, while Sec. 8 presents our conclusions. 

2 SYSTEM ASSUMPTION AND 

PROBLEMDEFINATION 

2.1 System Model 

Fig. 1 illustrates the interaction among the 

components in our system. We assume a 

cloud infrastructure consisting of a set of S 

servers, where each server is responsible for 

hosting a subset D of all data 

itemsDbelonging to a specific application 

domain (D ⊂D). Users interact with the 

system by submitting queries or update 

requests encapsulated in ACID transactions. 

A transaction is submitted to a Transaction 

Manager (TM) that coordinates its 

execution. Multiple TMs could be invoked 

as the system workload increases for load 

balancing, but each transaction is handled by 

only one TM. We denote each transaction as 

T = q1,q2,...,qn, where qi ∈ Q is a single 

query/update belonging to the set of all 
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queries Q. The start time of each transaction 

is denoted by α(T), and the time at which the 

transaction finishes execution and is ready to 

commit is denoted by ω(T). We assume that 

queries belonging to a transaction execute 

sequentially, and that a transaction does not 

fork sub-transactions. These assumptions 

simplify our presentation, but do not affect 

the correctness or the validity of our 

consistency definitions. Let P denote the set 

of all authorization policies, and let Psi(D) 

denote the policy that server si uses to 

protect data item D. We represent a policy P 

as a mapping P : S×2D → 2R×A×N that 

associates a server and a set of data items 

with 

DBs and Policies 

DBs and Policies 

DBs and Policies 

Transactions 

Verifiable Trusted Third Parties (CAs) 

Transaction Managers (TMs) 

 

a set of inference rules from the set R, a 

policy administrator from the set A, and a 

version number. We denote by C the set of 

all credentials, which are issued by the 

Certificate Authorities (CAs) within the 

system. We assume that each CA offers an 

online method that allows any server to 

check the current status of credentials that it 

has issued [5]. Given a credential ck ∈C, 

α(ck) and ω(ck) denote issue and expiration 

times of ck, respectively. Given a function 

m : Q → 2D that identifies the data items 

accessed by a particular query, a proof of 

authorization for query qi evaluated at server 

sj at time tk is a tuple hqi, 

sj,Psj(m(qi)),tk,Ci, where C is the set of 

credentials presented by the querier to 

satisfy Psj(m(qi)). In this paper, we use the 

function eval : F ×TS →B to denote whether 

a proof f ∈F is valid at time t ∈ TS. To 
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enhance the general applicability of the 

consistency models developed in this paper, 

the above formalism is intentionally opaque 

with respect to the policy and credential 

formats used to implement the system. 2.2 

Problem Definition 

Since transactions are executed over time, 

the state information of the credentials and 

the policies enforced by different servers are 

subject to changes at any instance of time, 

therefore it becomes important to introduce 

precise definitions for the different 

consistency levels that could be achieved 

within a transactions lifetime. These 

consistency models strengthen the trusted 

transaction definition by defining the 

environment in which policy versions are 

consistent relative to the rest of the system. 

Before we do that, we define a transaction’s 

view in terms of the different proofs of 

authorization evaluated during the lifetime 

of a particular transaction. 

Definition 1: (View) A transaction’s view 

VT is the setof proofs of authorization 

observed during the lifetime of a transaction 

[α(T),ω(T)] and defined as VT = {fsi | fsi = 

hqi, si,Psi(m(qi)),ti,Ci∧qi ∈ T}. _ Following 

from Def. 1, a transaction’s view is built 

incrementally as more proofs of 

authorization are being evaluated by servers 

during the transaction execution. We now 

present two increasingly more powerful 

definitions of consistencies within 

transactions. 

Definition 2: (View Consistency) A view 

VT = {hqi, si,Psi(m(qi)),ti,Ci,...,hqn, 

sn,Psn(m(qn)),tn,Ci} is view consistent, or 

φ-consistent, if VT satisfies a predicate φ-

consistent that places constraints on the 

versioning of the policies such that φ-

consistent(VT) ↔∀i,j : ver(Psi) = ver(Psj) 

for all policies belonging to the same 

administrator A, where function ver is 

defined as ver : P →N. _ With a view 

consistency model, the policy versions 

should be internally consistent across all 

servers executing the transaction. The view 

consistency model is weak in that the policy 

version agreed upon by the subset of servers 

within the transaction may not be the latest 

policy version v. It may be the case that a 

server outside of the S servers has a policy 

that belongs to the same administrative 

domain and with a version v0 > v. A more 

strict consistency model is the global 

consistency and is defined as follows. 

Definition 3: (Global Consistency) A view 

VT = {hqi, si,Psi(m(qi)),ti,Ci,...,hqn, 
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sn,Psn(m(qn)),tn,Ci} is global consistent, or 

ψ-consistent, if VT satisfies a predicate ψ-

consistent that places constraints on the 

versioning of the policies such that ψ-

consistent(VT) ↔ ∀i : ver(Psi) = ver(P) for 

all policies belonging to the same 

administrator A, and function ver follows 

the same aforementioned definition, while 

ver(P) refers to the latest policy version. _ 

With a global consistency model, policies 

used to evaluate the proofs of authorization 

during a transaction execution among S 

servers should match the latest policy 

version among the entire policy set P, for all 

policies enforced by the same administrator 

A. Given the above definitions, we now 

have a precise vocabulary for defining the 

conditions necessary for a transaction to be 

asserted as “trusted”. 

Definition 4: (Trusted Transaction) Given a 

transaction T ={q1,q2,...,qn}and its 

corresponding view VT, T is trusted iff 

∀fsi∈VT : eval(fsi,t), at some time instance t 

: α(T) ≤ t ≤ ω(T) ∧ (φ-consistent(VT) ∨ ψ-

consistent(VT)) _ Finally, we say that a 

transaction is safe if it is a trusted 

transaction that also satisfies all data 

integrity constraints imposed by the 

database management system. A safe 

transaction is allowed to commit, while an 

unsafe transaction is forced to rollback. 

3TRUSTEDTRANSACTION 

ENFORCEMENT 

In this section, we present several 

increasingly stringent approaches for 

enforcing trusted transactions. We show that 

each approach offers different guarantees 

during the course of a transaction. Fig. 2 is a 

graphical depiction of how these approaches 

could be applied to a transaction running 

across three server, and will be referenced 

throughout this section. In this figure, dots 

represent the arrival time of a query to some 

server, stars indicate the times at which a 

server validates a proof of authorization, and 

dashed lines represent view- or globally-

consistency policy synchronization among 

servers. 

3.1 Deferred Proofs of Authorization 

Definition 5: (Deferred Proofs of 

Authorization) Given a transaction T and its 

corresponding view VT, T is trusted under 

the Deferred proofs of authorization 

approach, iff at commit time ω(T), ∀fsi∈VT 

: eval(fsi,ω(T)) ∧ (φ-consistent(VT) ∨ 

ψconsistent(VT)) _Deferred proofs present 

an optimistic approach with relatively weak 
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authorization guarantees. The proofs of 

authorization are evaluated simultaneously 

only at commit time (using either view or 

global consistency from Defs. 2 and 3) to 

decide whether the transaction is trusted. 

3.2 Punctual Proofs of Authorization 

Definition 6: (Punctual Proofs of 

Authorization) Given a transaction T and its 

corresponding view VT, T is trusted under 

the Punctual proofs of authorization 

approach, iff at any time instance ti : α(T) ≤ 

ti ≤ ω(T) ∀fsi∈VT : eval(fsi,ti) ∧ 

eval(fsi,ω(T)) ∧ (φ-consistent(VT) ∨ ψ-

consistent(VT)) _ Punctual proofs present a 

more proactive approach in which the proofs 

of authorization are evaluated 

instantaneously whenever a query is being 

handled by a server. This facilitates early 

detections of unsafe transactions which can 

save the system from going into expensive 

undo operations. All the proofs of 

authorization are then re-evaluated at 

commit time to ensure that policies were not 

updated during the transaction in a way that 

would invalidate a previous proof, and that 

credentials were not invalidated. Punctual 

proofs do not impose any restrictions on the 

freshness of the policies used by the servers 

during the transaction execution. 

Consequently, servers might falsely deny or 

allow access to data. Thus, we propose two 

more restrictive approaches that enforce 

some degree of consistency among the 

participating servers each time a proof is 

evaluated. 

3.3 Incremental Punctual Proofs of 

Authorization 

Before we define the Incremental Punctual 

proofs of authorization approach, we define 

a view instance, which is a view snapshot at 

a specific instance of time. 

Definition 7: (View Instance) A view 

instance VT ti ⊆ VT is defined as VT ti = 

{fsi | fsi = hqi, si,PA si(m(qi)),t,Ci ∈ VT ∧ t 

≤ ti}, ∀t,ti : α(T) ≤ t ≤ ti ≤ω(T). _ 

Informally, a view instance VT ti is the 

subset of all proofs of authorization 

evaluated by servers involved in transaction 

T up until the time instance ti. 

Definition 8: (Incremental Punctual Proofs 

of Authorization) Given a transaction T and 

its corresponding view VT, T is trusted 

under the Incremental Punctual proofs of 

authorization approach, iff at any time 

instance ti : α(T) ≤ ti ≤ω(T), ∀fsi∈VT ti : 

eval(fsi,ti) ∧ (φ-consistent(VT ti ) ∨ ψ-

consistent(VT ti )) _ Incremental Punctual 
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proofs develop a stronger notion of trusted 

transactions, as a transaction is not allowed 

to proceed unless each server achieves the 

desired level of the policy consistency with 

all previous servers. This implies that all 

participating servers will be forced to have a 

consistent view with the first executing 

server unless a newer policy version shows 

up at a later server, in which case the 

transaction aborts. For view consistency, no 

consistency check at commit time is 

required, since all participating servers will 

be view consistent by commit time. On the 

other hand, the global consistency condition 

necessitates another consistency check at 

commit time to confirm that the policies 

used have not become stale during the 

window of execution between the last proofs 

of authorization and commit time. 

3.4 Continuous Proofs of Authorization 

We now present the least permissive 

approach which we call Continuous proofs 

of authorization. 

Definition 9: (Continuous Proofs of 

Authorization) A transaction T is trusted 

under the Continuous approach, iff 

∀1≤i≤n∀1≤j≤i : eval(fsi,ti)∧eval(fsj,ti) ∧ (φ-

consistent(VT ti ) ∨ ψ-consistent(VT ti )) at 

any time instance t : α(T) ≤ ti ≤ω(T) _ In 

Continuous proofs, whenever a proof is 

evaluated, all previous proofs have to be re-

evaluated if a newer version of the policy is 

found at any of the participating servers. At 

commit time, Continuous proofs behave 

similarly to Incremental Punctual proofs. In 

contrast with the Incremental Punctual 

proofs, if later executing servers are using 

newer policy versions, all previous servers 

must (i) update their policies to be consistent 

with the newest one, and (ii) re-evaluate 

their proofs of authorization using the newer 

policies. In the case of global consistency, 

all servers will be forced to use the latest 

policy version at all times. Therefore, we 

consider this variant of our approaches to be 

the most strict approach of all giving the 

best privacy and consistency guarantees. 

The decision of which approach to adopt is 

likely to be a strategic choice made 

independently by each application. As with 

any trade-off, the stronger the security and 

accuracy given by an approach, the more the 

system has to pay in terms of 

implementation and messages exchange 

overheads.  

6 Conclusion 
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Despite the popularity of cloud services and 

their wide adoption by enterprises and 

governments, cloud providers still lack 

services that guarantee both data and access 

control policy consistency across multiple 

data centers. In this article, we identified 

several consistency problems that can arise 

during cloud-hosted transaction processing 

using weak consistency models, particularly 

if policy-based authorization systems are 

used to enforce access controls. To this end, 

we developed a variety of light-weight proof 

enforcement and consistency models—i.e., 

Deferred, Punctual, Incremental, and 

Continuous proofs, with view or global 

consistency—that can enforce increasingly 

strong protections with minimal runtime 

overheads. We used simulated workloads to 

experimentally evaluate implementations of 

our proposed consistency models relative to 

three core metrics: transaction processing 

performance, accuracy (i.e., global vs. view 

consistency and recency of policies used), 

and precision (level of agreement among 

transaction participants). We found that high 

performance comes at a cost: Deferred and 

Punctual proofs had minimal overheads, but 

failed to detect certain types of consistency 

problems. On the other hand, high accuracy 

models (i.e., Incremental and Continuous) 

required higher code complexity to 

implement correctly, and had only moderate 

performance when compared to the lower 

accuracy schemes. To better explore the 

differences between these approaches, we 

also carried out a trade-off analysis of our 

schemes to illustrate how application-centric 

requirements influence the applicability of 

the eight protocol variants explored in this 

article. 
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